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Abstract. Data on grain sizes of pebbles in gravel-bed rivers are of key importance for the understanding of river systems. 

To gather these data efficiently, low-cost UAV (unmanned aerial vehicle) platforms have been used to collect images along 10 

rivers. Several methods to extract pebble size data from such UAV imagery have been proposed. Yet, despite the availability 

of information on the precision and accuracy of UAV surveys, a systematic analysis of the uncertainties that might be 

introduced into the resulting grain size distributions is still missing. 

Here we present the results of three close-range UAV surveys conducted along Swiss gravel-bed rivers with a consumer-

grade UAV. We measure grain sizes on these images by segmenting grains, and we assess the dependency of the results and 15 

their uncertainties on the photogrammetric models. We employ a combined bootstrapping and Monte Carlo (MC) modelling 

approach to model percentile uncertainties while including uncertainty quantities from the photogrammetric model. 

Our results show that uncertainty in the grain size dataset is controlled by counting statistics, the selected orthoimage format, 

and the way the images are segmented. Therefore, our results highlight that grain size data are more precise and accurate, 

and largely independent on the quality of the photogrammetric model, if the data is extracted from single, undistorted 20 

orthoimages. In addition, they reveal that environmental conditions (e.g., exposure to light), which control the quality of the 

photogrammetric model, also influence the detection of grains during image segmentation, which can lead to a higher 

uncertainty in the grain size dataset. Generally, these results indicate that even relative imprecise and not accurate UAV 

imagery can yield acceptable grain size data, under the conditions that the photogrammetric alignment was successful and 

that suitable image formats were selected (preferentially single orthoimages). 25 

1 Introduction 

Knowledge of the particle size distribution and the shape of channel bars in gravel-bed rivers offers a key to both a scientific 

understanding of fluvial systems and the ecological management of rivers. In addition, constraints on sediment caliber are 

critical to understand the hydraulic conditions, the mechanisms of sediment transport and the grain-grain interaction during 

material entrainment, transport and deposition (Piégay et al., 2020). Information on grain size allows us to quantify the 30 
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thresholds for material transport (e.g., Shields, 1936; Church et al., 1998), to understand and model the transport of sediment 

in rivers (e.g., Attal et al., 2015; Dunne and Jerolmack, 2018; Lamb and Venditti, 2016; Whittaker et al., 2010) or to 

characterize habitats (e.g., Kondolf and Wolman, 1993). It further allows predicting the probability of sediment entrainment 

(Schlunegger et al., 2020), and to assess the impact of infrastructure on the material transport (e.g., Grant, 2012). Standard 

methods that have been developed to quantify grain sizes of gravels in rivers involve time-intensive fieldwork (e.g., the 35 

Wolman (1954) point counting method), which bears the risk of introducing biases that are rooted in the way the 

measurements in the field are conducted (e.g., Wolcott and Church, 1991; Bunte and Abt., 2009). To reduce the effort and 

time involved in collecting data by hand, and the possible biases therein, methods for grain size estimation based on image 

data have received more attention since the early 2000s (e.g., Carbonneau et al., 2004; Butler et al., 2001). These tools have 

developed into established methods for the quantification of grain sizes in recent years (Carbonneau et al., 2018; Purinton 40 

and Bookhagen, 2019; Detert and Weitbrecht, 2012). This development was assisted by the technological improvement of 

unmanned aerial vehicles (UAVs) and low-cost photogrammetric software packages, which allow a large number of 

relatively high-resolution topographic data from images to be collected (e.g., Eltner et al., 2016; Woodget et al., 2018). In 

particular, the use of the Structure from Motion technique (SfM; Eltner and Sofia, 2020; Fonstad et al., 2013; James and 

Robson, 2012) has yielded various topographic datasets, such as digital elevation models (DEMs), orthoimages and 45 

orthoimage mosaics, and 3D point clouds. Such data has offered the basis to extract grain size information from fluvial 

gravel bars (Woodget et al., 2018). Several studies resulted in the development of methods for the grain size estimation that 

are tailored to specific UAV workflows and survey designs (e.g., Carbonneau et al., 2018; Vázquez-Tarrío et al., 2017; 

Woodget and Austrums, 2017). Consequently, over the last few years, significant effort has been directed toward quantifying 

and reducing the uncertainties related to SfM models (e.g., James et al., 2017a, 2017b; O’Connor et al., 2017; Sanz-50 

Ablanedo et al., 2020; Smith and Vericat, 2015). In contrast, relatively few studies have been conducted towards analyzing 

the uncertainties that are introduced by the design of the UAV survey, the selection of the image processing approach and 

the way in which grain size data is subsequently extracted from these images (Pearson et al., 2017; Woodget et al., 2018). 

Despite the fact that all data on grain size can only be as precise and accurate as the underlying image or topographic model, 

a systematic evaluation of the method of choice, which particularly considers the related uncertainties, is still scarce for such 55 

data (Piégay et al., 2020). Furthermore, recent work demonstrates that widely used survey strategies and camera lenses in 

UAV platforms might still introduce systematic biases to SfM data (James et al., 2020; Sanz-Ablanedo et al., 2020), thereby 

pointing to the need to re-evaluate some previous UAV survey recommendations (i.e., survey geometry, image acquisition 

format and some parameters for camera lens modelling).  

This paper addresses this challenge. Here we present the results of three close-range UAV surveys conducted along Swiss 60 

gravel-bed rivers (Fig. 1), for which we developed SfM topographic models. From these models, we extracted undistorted 

images for grain size analysis and for estimates of model uncertainties. The focus is to assess the dependency of the grain 

size results on the UAV survey strategy. Consequently, we particularly assess the effect of (i) different image acquisition 

formats, (ii) specific survey designs recommended by previous authors, and (iii) geo-referencing methods on grain size data. 
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We do so by first employing existing techniques for assessing the uncertainties in topographic models derived from SfM 65 

(James et al., 2017a, 2017b, 2020). We then propagate these uncertainties from the UAV survey through the grain size 

measurements, which we conduct with an established method (Purinton and Bookhagen, 2019). In particular, we combine 

the effect of the different UAV and SfM models and their uncertainties with the statistical uncertainties related to the grain 

size measurements through a combined bootstrap and Monte Carlo (MC) approach. 

 70 

Figure 1: Overview of the surveyed gravel bars along the selected Swiss rivers (see insert) as overview orthophoto mosaic from the most 
accurate topographic models (see text for discussion): a) Entle surveys (S9_5, S9_6), b) Luetschine survey (L2) and c) Kander survey 
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(K1). Regions A and B, which are used for grain size measurements (both orthophoto mosaic and single image) are indicated.  GCP = 
ground control point. 

1.1 Approaches to collect grain size data from digital images 75 

Historically, the collection of grain size data from gravel-bed rivers has relied on time-consuming and laborious physical 

measurements of clasts in the field (Wolman, 1954; Wohl et al., 1996; Bekaddour et al., 2013; van der Berg and 

Schlunegger, 2012; Pitlick et al., 2021). Early image-based grain size measurements were conducted with a ‘photo-sieving’ 

approach (e.g., Ibekken and Schleyer, 1986), which relied on the visual identification of clasts in images from ground-based 

cameras. The next step in the improvement of the method was accomplished using two different strategies, which 80 

encompassed (i) methods where grain sizes are inferred from statistical properties of image parameters (e.g., image texture, 

image spectral or frequency content, point cloud roughness; Woodget et al., 2018) and (ii) approaches where the sizes of 

individual grains are measured trough image segmentation (e.g., Detert and Weitbrecht, 2012; Purinton and Bookhagen, 

2019; and references therein).  

Most grain size datasets that were collected with the first set of methods were mainly based on a variety of statistical image 85 

parameters, such as semivariance (e.g., Carbonneau et al., 2005), inertia, entropy, grey-level co-occurrence matrices (e.g., 

Carbonneau et al., 2004; Woodget et al., 2018; Woodget and Austrums, 2017) and autocorrelation (e.g., Rubin, 2004; 

Buscombe, 2008; Buscombe et al., 2010). In this context, other approaches have exploited the roughness pattern of 

topographic models from 3D point cloud datasets to estimate grain sizes (e.g., Brasington et al., 2012; Woodget and 

Austrums, 2017). All of these methods require an on-site metric calibration in the field (e.g., with a differential GPS or a 90 

meters stick) and only deliver a single percentile of a grain size distribution (Purinton and Bookhagen, 2019). Here, an 

exception is offered by the wavelet decomposition approach of Buscombe (2013), which is able to determine the entire grain 

size distributions from images without a field-based calibration. However, this only works in a reliable way if grains have 

nearly the same size and shape. In general, however, the grain size percentile values that resulted from surveys have been 

found to be highly variable, which depends on the sorting, the shape and the bedding of the target gravels (Pearson et al., 95 

2017). Such variability in grain size data thus violates the condition of nearly equally sized grains, which is required if one 

aims to apply the Buscombe (2013) method. Recently, Buscombe (2020) and Lang et al. (2021) have shown that the use of 

deep learning frameworks allow to avoid the time consuming calibration in the field, which facilitates the remote 

measurements of grain sizes from scaled or geo-referenced images. However, these machine-learning models do not allow 

scales to be transferred to new data, with the consequence that the effort that is needed to train the model for a new setting is 100 

quite large (Lang et al., 2021). 

Methods based on the segmentation and delineation of individual grains in images constitute the second set of tools. 

Common approaches rely on edge detection and watershed segmentation (e.g., Butler et al., 2001; Graham et al., 2005; 

Detert and Weitbrecht, 2012) or most recently on edge detection and k-means clustering (Purinton and Bookhagen, 2019). 

Grain size measurement through image segmentation is challenging for images with a high visual complexity, i.e., 105 

overlapping grains, irregularly shaped, coloured or textured grains, and vegetation or extensive shadows on the images 
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(Purinton and Bookhagen, 2019). However, the delineation of individual grains in images has the advantage that the result is 

a continuous grain size distribution. This approach additionally allows the analysis of sub-regions and has the potential to 

obtain grain size data of individual clast populations, and it offers the possibility to measure clast orientations. 

1.2 Uncertainties related to the photogrammetric structure from motion technique 110 

The rise of widely available and cheap UAV platforms, equipped with stabilizing gimbals and easy-to-use operating 

applications in combination with low-cost and user-friendly photogrammetric software packages, has resulted in the 

generation of high-resolution topographic data for various research applications (e.g., Carbonneau et al., 2003; Eltner et al., 

2016; Eltner and Sofia, 2020; Fonstad et al., 2013). In this context, the uncertainties and resolution of data processed through 

SfM (Structure from Motion technique) especially from UAV images can be predicted from photogrammetric principles. 115 

They critically depend on technical (i.e., flight geometry, camera angles, usage of ground control points, camera parameters) 

and environmental parameters, the latter of which are beyond the operator’s control (i.e., lightning conditions, local 

topography, vegetation, weather, GNSS signal strength). The uncertainties in topographic SfM models consist of three 

components including i) the external accuracy of the reference framework (i.e., scaling, rotation or offset of the entire model) 

ii) the internal consistency of the model (sometimes called ‘precision’) and iii) a systematic uncertainty component arising 120 

from the photogrammetric principle itself (i.e., ‘doming’ or ‘bowling’). We refer the reader to James et al. (2020), James et 

al. (2017a, 2017b) and Carbonneau and Dietrich (2017) for a detailed discussion of these uncertainty components. The use of 

ground control points (GCPs) or the application of differential on-board RTK GNSS (real-time kinematic positioning for 

global navigation satellite systems) techniques for direct geo-referencing effectively increases the accuracy of the reference 

framework (James, Robson and Smith, 2017; Sanz-Ablanedo et al., 2020). Image quality and camera calibration parameters 125 

control the level of internal precision (sometimes called ‘shape’ precision; James et al., 2017a). The use of GCPs together 

with an improved survey geometry and a pre-calibrated camera can significantly increase the internal precision (Carbonneau 

and Dietrich, 2017; James et al., 2017; O’Connor, Smith and James, 2017; Griffiths and Burningham, 2019). In contrast, the 

occurrence of a systematic uncertainty can only be detected with GCPs and is still a common problem within SfM 

processing (e.g., Eltner and Sofia, 2020). The successful mitigation of such systematic biases requires a careful choice of the 130 

image network geometry, such as the inclusion of oblique camera angles (James and Robson, 2014) and a successful camera 

lens modelling during the subsequent generation of a model (e.g., James et al., 2020). Finally, it is noteworthy that 

uncertainties in models and data from any SfM workflow are derived from the photogrammetric alignment of the images 

during the generation of the sparse point cloud. Therefore, the uncertainty in the sparse cloud data already includes all 

uncertainties of the SfM model, independent on the type of the final data model.  135 

Despite the possible drawbacks and limitations as outlined above, UAV images have been processed with SfM workflows 

over the last decade for various research purposes in the fields of fluvial geomorphology and sedimentology (for an overview 

see Carrivick and Smith, 2019), including grain size measurements in fluvial systems (e.g., Woodget et al., 2018). 

Specifically, for automated grain size measurements, Carbonneau et al. (2018) developed the ‘robotic photosieving’ concept, 
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which is based on the use of close range, single UAV images that have been processed with a specific SfM pipeline (direct 140 

geo-referencing, the use of pre-calibrated camera lens models, and surveys with a second flight altitude to better estimate the 

camera positions). Accordingly, in such an approach, only the image distance is effectively used for scaling. Other methods 

use orthophotos and orthophoto-mosaics (Woodget et al., 2018) or 3D point cloud roughness (Woodget and Austrums, 2017) 

to measure the sizes of gravels. The applications of these methods have shown that single images are most accurate for grain 

size estimations while image textures or 3D point clouds yield measurement results that are less accurate (Woodget et al., 145 

2018). Unfortunately, no systematic evaluation of uncertainties introduced by the UAV SfM approach on such grain size 

estimations exists so far. 

2 Methods 

We acquired UAV images (Sect. 2.1) from rivers situated in the Swiss Alps with a widely used platform following 

established survey strategies, which we processed with an established SfM software package (Sect. 2.2). We then used this 150 

output to measure the sizes of grains and the uncertainty associated with this (Sect. 2.3). The steps of this workflow (Sect. 

2.4) are described below. 

2.1 UAV surveys 

We chose study sites along the Luetschine (referred to as L2 surveys), Entle (S9 surveys) and Kander (K1 surveys) Rivers 

that are all situated in the Swiss Alps (Fig. 1). We selected river reaches where gravel bars can be readily identified on 155 

satellite images and where the local topography offers the opportunity to operate the UAV at different conditions and 

challenges, i.e. due to a vegetation cover, narrow gorges and steep lateral valley borders. We conducted close-range surveys 

with a flight altitude between 5 and 7m above ground to ensure a ground-sampling distance of ~1.5 mm (Table 1). In 

general, we targeted a lateral and frontal overlap between individual images in the order of 80%. We distributed GCPs over 

the target gravel bars and measured them with a Leica Viva GS14 or a Leica Zeno GG04 plus – GNSS antenna, with a real-160 

time online Swipos-GIS/GEO RTK correction. These setups have a horizontal precision of 2 cm and a vertical precision of 4 

cm (for 2 sigma) under ideal conditions (Swisstopo, 2022). All GCPs and their uncertainties used in this survey can be found 

in Table S1. 

We diversified the strategy for image acquisition to produce a large range of models, which is considered to resemble a 

variety of practical scenarios and strategies (Fig. 2). These scenarios are based on recommendations to include oblique angle 165 

camera positions (e.g., James and Robson, 2014), images from a second altitude level (e.g., Carbonneau and Dietrich, 2017), 

and referencing strategies with and without GCPs (e.g., James et al., 2017). All these scenarios and models are summarised 

in Figure 2 for the three study areas. Some scenarios are expected to produce topographic models with low accuracy and 

large systematic uncertainty (e.g., single level grid with no GCPs as control points). All images were taken with a DJI 

Phantom 4 Pro v2 on-board camera (DJI FC6310), which utilizes a mechanical shutter. For most flights, images were 170 
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simultaneously taken in a JPEG and raw (i.e., the unprocessed DNG) image format using the VC Technology’s flylitchi 

application (v2.10.0), except for the S9 surveys. There we used two UAV flight plans, for which we acquired the images first 

as JPEG files and then, during a second flight, in the DNG format. At the L2 and K1 sites, we first acquired a single grid line 

map. Subsequently, images were taken with oblique and convergent cameras with a pitch of > 20° at the same survey 

altitude. At site S9, both surveys were done with oblique and convergent camera angles (> 20°) at a higher flight altitude 175 

(~10 m). This higher altitude included an additional set of nadir images. These images that were taken at a higher altitude 

and with an oblique view were acquired during manual flying at all sites. A summary of the survey characteristics is 

provided in Table 1. 

The K1 site at the Kander river offers a setting that is ideal for close-range UAV image acquisition, with little peripheral 

vegetation and little potential GNSS signal obstruction. In contrast, the L2 site at Luetschine represents challenging UAV 180 

survey conditions, due to vegetation and infrastructure limiting the flight area, and because of the narrow valley potentially 

inhibiting the receipt of GNNS signals. The two surveys at Entle (S9) specifically allow us to test the inter-survey 

comparability and whether a rapid change in the external parameters such as lighting conditions or moving vegetation 

introduce a bias, and if such a bias would contribute to the uncertainties in the grain size estimation. 

 185 

Figure 2: Strategies for UAV surveys and Structure from Motion (SfM) model setups (upper row = Entle surveys, lower row = Luetschine 
and Kander surveys). We used a one-level grid of nadir camera positions as backbone geometry, which we complemented with oblique 
angle camera positions (James and Robson, 2014). At the Entle (S9), we took nadir images at a second altitude (e.g., Carbonneau et al., 
2018). We created different models during processing by first including all images and GCPs (i.e. resulting in models with “C1” labels) 
and then leaving out the oblique images or the GCPs. For the Entle (S9) models we also tested the option where we used the GCP targets 190 
in the images as reference markers only, resulting in two additional models that are labelled with “C2” and “C5”. Colours indicate similar 
model strategies. For flight altitude, nominal camera angles see Table 1. GCPs = ground control points. 
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River Date 
Net 

duration  

Flight 
height 

nominal  

Camera 
angle 

nominal 
[number of 

images] 

Number 
of 

flights 

Number 
of 

images 

Images 
after 
QA, 

[model 
name] 

Image 
format 

Ground 
sampling 
distance 

Number 
of used 
GCPs 

(Survey)  (minutes) (m) (°)     (mm)  

Kander 
(K1) 

06.08. 
2021 50 6 

nadir 
[271], 

 20° [129] 
3 401 400 JPEG & 

DNG 1.6 16 

Luetschine 
(L2) 

04.05. 
2021 32 5 

nadir [64], 
20° [20+1], 
50-65° [7] 

2 119 

95 
[L2_2], 

87 
[L2_1] 

JPEG & 
DNG 1.4 13 

Entle 
(S9_5) 

28.02. 
2021 23 5, 10 

nadir 
[217], 25° 

[24] 
2 304 241 DNG 1.4 14 

Entle 
(S9_6) 

28.02. 
2021 19 6, 14 

nadir 
[251], 25° 

[16] 
1 278 267 JPEG 1.6 10 

Table 1: Summary of the field surveys. QA = quality assessment, GCP = ground control point. 

2.2 Photogrammetric processing 195 

We generated all topographic SfM models following the same workflow (Fig. 3). We used the Agisoft Metashape (v1.6 Pro; 

formerly PhotoScan) software, licensed to the Institute of Geological Sciences, University of Bern. We chose this software 

because of its wide spread use in geomorphic studies (e.g., Eltner et al., 2016), its well-studied systematics (James et al., 

2020 and references therein), and the good agreement of results with those obtained with comparable software packages, 

e.g., Pix4D (Sanz-Ablanedo et al., 2020) or VMS (James et al., 2020). We followed the standard bundle adjustment 200 

procedure within this software package and refer to see Eltner and Sofia (2020) and James et al. (2019) for principal 

descriptions and guidelines of such workflows or to Over et al. (2019) for a detailed example. Our model generation (Fig. 

3a) always included (i) the manual removal of blurred images, (ii) the selection of the ‘highest quality’ settings within 

Metashape for the initial alignment and (iii) the subsequent filtering of tie point clouds. In general, we used self-referencing 

and GCPs for the alignment and standard camera modelling, which included all standard parameters for focal length (f), 205 

radial distortion (k1, k2, k3), the offset of the principal point (cx, cy) and one decentring parameter (p1; we did not include p2). 

Only when the camera modelling failed, we employed a pre-calibrated normal camera model. For these pre-calibrated 

camera models, we used the in-built camera calibration routine in Metashape, for which we took images of the ‘chessboard’ 

pattern from different angles with camera distances of 1 to 2 m. For models calibrated with GCP (ground control points), we 

included 50% of the GCPs for the alignment of the images, and we kept the remaining GCPs as checkpoints. For the ‘weak 210 

GCPs’ scenario, we used the GCP targets in an attempt to improve the image alignment without using the information on the 

position that was independently measured. 
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Figure 3: Workflow for grain size estimations from UAV-derived images. (a) Structure from motion workflow with PebbleCountsAuto 215 
(Purinton and Bookhagen, 2019) for grain size estimation. (b) Quantities used for estimating the uncertainty of the grain sizes. Quantities 
in squares denote image/survey-specific values, while variables in circles/ellipses are represented by a probability density function (pdf). 
Dashed arrows indicate quantities only used for uncertainty estimation in orthomosaics. For variable explanation, see S2.3 in the main text. 

We evaluated the accuracy of the SfM model with GCP residuals uncertainty, expressed as root mean square error (RMSE) 

between measured and estimated checkpoints. For the calculation of both horizontal (x,y direction) and vertical (z direction) 220 

RMSE values we used the program Metashape. To assess the model precision, we used the method (and the python script) of 

James et al. (2020) to export and evaluate the sparse point cloud precision from Metashape, which uses Metashape's sparse 

point coordinate variance as estimates for the precision of oriented and scaled point coordinates. Furthermore, we determined 

the systematic uncertainty (‘doming’) with the method of James et al. (2020) and report amplitudes of the modelled doming 
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in the z direction, which are calculated over horizontal distances of 20 m (K1), 12 m (L2), 30 m (S9_5) and 20 m (S9_6), in 225 

Sect. 3. 

For each generated model, we produced dense point clouds and orthophoto mosaics. This densification was done with the 

‘high quality’ and ‘mild depth filtering’ settings. The subsequent orthophoto mosaic generation was accomplished using the 

‘hole filling’ option and default blending (‘Mosaic’) in Metashape. Orthophoto mosaics were generated with a pixel 

resolution of 1 mm and were cut with the corresponding camera footprint. We also exported single images, which were 230 

undistorted by using the specific camera model from the photogrammetric alignment. We further estimated the camera 

height for these images as distance of the camera centre to the corresponding centre points on the images using Euclidian 

distances. All imageries (both orthophoto mosaics and single images) were exported from Metashape as JPEG file, with 

initial DNG images that were converted by using the camera white balance. For each study site, we selected specific areas, 

representing model regions with low and high model confidence (i.e., regions A and B hereafter), for which we then finally 235 

determined the grain size distributions. 

2.3 Grain size measurements  

We measured grain sizes automatically on all processed images with the open-source and python-based PebbleCounts (i.e., 

PebbleCountsAuto) software of Purinton and Bookhagen (2019). We employed this software package because of two 

reasons, namely that it yields sizes for individual grain instances and that it allows measuring large numbers of grains in an 240 

automated way. First, only the measurement of individual grain instances (which means that each grain is identified, 

delineated and recorded) allows to propagate specific uncertainty quantities (see Sect. 2.4 below, Fig. 3) from UAV surveys 

to grain size data. This prohibits the use of texture-based approaches sensu latu, e.g., DGS (Buscombe, 2013), SediNet 

(Buscombe, 2019), GrainNet (Lang et al., 2021) among others, to measure grain sizes for the purpose of this study. Second, 

other segmentation-based approaches, e.g., Basegrain (Detert and Weitbrecht, 2012) or manual segmentation (Sulaiman, 245 

2014), require manual processing of each image and are therefore not suitable for the large number of processed images as is 

the case in this study. We acknowledge that there are known shortcomings of PebbleCounts, and we refer to Chardon et al. 

(2021) for a comparison with other software results, and to Purinton and Bookhagen (2021) for mitigation strategies of some 

shortcomings. 

In detail, this program segments images and subsequently fits ellipsoids around detected instances of grains, thereby 250 

recording the lengths of the a- and b-axes of these ellipsoids, of which we report the b-axis values throughout the study for 

simplicity purposes. Key software input parameters were an ‘otsu_threshold’ of 50 and ‘first_nl_denoise’ of 2, and no sand 

or vegetation mask was used (for further details we refer to Burinton and Bookhagen, 2019). A detection limit of a minimum 

of 12 pixels for a grain and the default of 30% as a maximum misfit were kept constant for all measurements. This results in 

a minimum detection threshold for grains (i.e., a cut-off) that is image specific. For the processed images, this threshold lies 255 

around 18 mm given the image pixel resolutions of c. 1.5 mm px-1. The image resolution, and thus the scale of single images, 

was estimated individually for undistorted and scaled single images. To do so, we applied the calculate_camera_resolution 
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script of Purinton and Bookhagen (2019) together with the camera model parameters and the camera distance estimation 

from the corresponding SfM model. For orthophoto mosaics the resolution was up-sampled to 1 mm px-1. We cut all grain 

size data below 18 mm to achieve comparable data sets. 260 

For the Kander survey (K1) we additionally measured the b-axis of 250 grains with the approach of Wolman (1954), thereby 

using a household calliper and a measuring tape. This data was collected as ground truth to compare grain size data 

measured in the UAV imagery. Yellow rulers in Figure 4 indicate the area where grain sizes were manually measured. 

2.4 Uncertainty estimation  

For uncertainty estimation, we used a combined bootstrapping and Monte Carlo modelling approach. We first statistically 265 

resampled each grain size distribution (GSD) through random resampling with replacement, i.e. through bootstrapping. We 

applied 104 iterations to estimate the effect of the sample size. We modelled the uncertainty of each b-axis within these 

resampled GSD by using uncertainty metrics from the SfM models (Fig. 3b; see also Sect. 2.2), thereby considering that:  

𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠 =  (𝑏𝑏𝑠𝑠 ±  𝜀𝜀𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ  ) ∗ 𝜀𝜀𝑠𝑠𝑠𝑠𝑠𝑠𝑙𝑙𝑙𝑙.         (1) 

Here, 𝑏𝑏𝑠𝑠 is a randomly resampled b-axis value from the measured grain size distribution, 𝜀𝜀𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ represents a measurement 270 

error on the axis length. This error depends on the resolution of the final images that are used for segmentation. 𝜀𝜀𝑠𝑠𝑠𝑠𝑠𝑠𝑙𝑙𝑙𝑙 

includes the systematic errors, the precision and the accuracy related to the SfM model. The 𝜀𝜀𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ  -term for single images 

is determined by the resolution of 2𝑎𝑎√2, where 𝑎𝑎 is the average pixel length. To achieve a randomization in the single image 

data, we parametrized 𝜀𝜀𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ as normal distribution with 2𝑎𝑎√2 as one standard deviation. For the orthophoto mosaics, we 

employed the same approach to quantify the measurement errors. However, due to the nature of being a mosaic, an 275 

additional error that is sourced in the image alignment might arise since we cannot assume that each pixel is in its correct 

position in relation to its neighbour. Therefore, we additionally used the average pixel error of the model (𝑝𝑝𝑝𝑝), estimated 

from GCP checkpoints (Table S2): 

𝜀𝜀𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ = 2𝑎𝑎√2 ∗ 𝑝𝑝𝑝𝑝          (2) 

We consider this average pixel error as normally distributed and used the RMS re-projection error (𝜎𝜎𝑅𝑅𝑅𝑅𝑅𝑅) as one standard 280 

deviation upon randomization.  

The 𝜀𝜀𝑠𝑠𝑠𝑠𝑠𝑠𝑙𝑙𝑙𝑙 factor, which accounts for the SfM model accuracy, precision and systematic error (‘doming’), consists of three 

scaling components. This is parametrized as 

𝜀𝜀𝑠𝑠𝑠𝑠𝑠𝑠𝑙𝑙𝑙𝑙 = 1 ∗
𝜎𝜎𝑑𝑑 + 𝜎𝜎𝑝𝑝𝑝𝑝.  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝. + 𝜎𝜎𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑑𝑑
.        (3) 

Generally, the scale of orthoimages is controlled by the distance between the camera and the ground (𝑑𝑑) and the uncertainty 285 

associated with this distance. For single images, we estimated the individual camera distance by taking the mean distance in 

z direction to the 100 sparse cloud points that are closest to the camera center point. We used a python script (Supporting 

information Code S1) for this selection. For randomization, we used this mean as 𝑑𝑑 and its standard deviation as 𝜎𝜎𝑑𝑑. For 
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orthophoto mosaics, we used the mean distance of all cameras and the associated standard deviation, respectively. We did so 

to be conservative and to account for differences between the observation distances of several cameras. We used the mean 290 

value of the point cloud precisions in z direction over the whole survey. We determined this value with the method of James 

et al. (2020), and we considered it as standard deviation of a normal distribution to randomize 𝜎𝜎𝑝𝑝𝑙𝑙.  𝑝𝑝𝑝𝑝𝑙𝑙𝑠𝑠., both for single 

images and orthomosaics. Finally, we considered the effects related to the systematic errors through the use of half of the 

doming amplitude in z direction, which we fitted with the method of James et al. (2020). We used this value as standard 

deviation for a uniform distribution for 𝜎𝜎𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑙𝑙𝑙𝑙, both for single images and orthomosaics. We implemented a randomization 295 

of these components through truncated normal distributions to avoid ending up with grains that are smaller than the detection 

limit or the negative length values. 

From the randomized grain size distribution (GSD), we calculated percentile values for grain sizes. Accordingly, for each 

grain size percentile such as the D50, D84, and others, we report the median percentile along with percentiles 2.5 and 97.5 

across the 104 GSDs, which represents the 95% confidence interval of the respective percentile. 300 

3 Results 

In this section, we first present the results of the UAV field surveys, before proceeding to the results of the photogrammetric 

models. Finally, we present grain size results, both for full grain size distributions and for key percentile values, and results 

of field measurements. 

3.1 UAV surveys and imagery 305 

The field surveys were successfully completed under sunny and calm (Kander), overcast and turbulent (Luetschine) and 

rapidly changing weather conditions (Entle). Difficult flying conditions (changing light and wind) decreased the image 

quality, which contributed to the need to exclude a significant number of images for the Luetschine (up to 27%) and Entle 

(up to 20%) surveys (Table 1). The excluded images were mostly from the boundaries of the survey areas. For the Entle site 

we removed nadir images taken from the higher altitude, and for the Luetschine reach we excluded images that were 310 

acquired with strongly oblique view angles (>50°). Noteworthy, most of them were taken during manual flight and, for the 

Entle case, from the higher altitude level. Removing these images was necessary for a successful image matching during the 

photogrammetric alignment. 

The obtained UAV images displayed a range of differences in image content and light conditions (Fig. 4). Sunny situations 

result in more interstitial shadows (K1, S9), while overcast conditions with changing light led to occasional overexposure 315 

(L2). Of note here is site S9, which features more sandy areas then the other sites. Generally, UAV on-board image 

corrections tend to yield a higher saturation and contrast in the resulting imagery, which was persistent after 

photogrammetric processing (Fig. 4). 
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Figure 4: UAV imagery results illustrated by a selected range of images, for both image acquisition formats (JPEG and DNG) that we 320 
used for grain size estimation. The photos showcase survey-specific image conditions, e.g., shadows, exposure, saturation and contrast as 
well as site specific variations, e.g. grain shape, colour or sand content. Please note that all these images, not only orthophoto mosaics 
(OM), are results that were achieved after photogrammetric processing, i.e. single images (SI) are undistorted with a camera model. All 
images in this figure were extracted from SfM models, which include GCPs and oblique camera angles in the bundle adjustment. 
Furthermore, these images only show parts of the corresponding images that were used for grain size estimation. For location reference, 325 
see Fig. 1. 

3.2 Topographic models 

In total, we produced 28 topographic models with the SfM approach. For all sites, the resulting models show large variations 

(Table 2) in absolute accuracies, sparse point cloud precisions and systematic errors (‘doming’).  Vertical accuracy (RMSEz, 
estimated for checkpoints only) ranges from 5.4 cm to 5.6 m for the K1 survey, from 1.8 cm to 63 m for the L2 survey and 330 

from 3.9 cm to >200 m for the S9 surveys. Horizontal accuracy (RMSEx,y) ranges from 0.9 cm to 2.4 m for K1 models, from 

2.1 cm to 2.2 m for the L2 models and from 3.3 cm to 4.9 m for S9 models. All model accuracy metrics can be found in 
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Table S2. Model precision errors estimated from the sparse point clouds are generally highest in the vertical z-direction (see 

Table S3 for precision of all results), and therefore, precision estimates are only presented here for the z direction (Table 2). 

Precision ranges from 0.4 cm to 0.4 m for K1 models, from 1 cm to 1 m for L2 models and 1 cm to 0.7 m for S9 models, 335 

spanning a range of up to two orders of magnitude. Systematic errors estimated from GCP residuals and expressed as 

doming amplitudes in z direction ranges from 3 cm to 0.9 m for K1 models, from 5 cm to 1.1 m for L2 models, and from 3 

cm to 3.1 m for S9 models.  

In general, the uncertainty is smallest across all metrics for model setups for surveys that included GCPs and oblique camera 

angles (C1 suffix for all surveys). The only exceptions are those models where GCPs and only grid-aligned cameras were 340 

used (C2 suffix for K1, L2 surveys and C3 suffix for S9 surveys), thereby resulting in a sometimes slightly higher point 

precision (Table 2). Overall, models with no GCPs, and where cameras were only orientated in a grid fashion (suffix C4 for 

K1 and L2 surveys, and suffix C6 for S9 surveys), produce the highest uncertainties across all metrics. Models that are based 

on raw format images (K1_1, L2_1 and S9_5 models) yield overall smaller uncertainties for all metrics than models where 

the UAV on-board pre-processed JPEG images were used (K1_2, L2_2, S9_6 models). Only for L2 JPEG models with 345 

GCPs (L2_2_C1, _C2) the RMSE and vertical precision values are slightly smaller than or similar to the related values of 

comparable DNG models (L2_1_C1, _C2). 

Model 
 

Check point 
accuracy 

Point 
precision 

Doming/ 
Bowling 

amplitude Model 
 

Check point 
accuracy 

Point 
precision 

Doming/ 
Bowling 

amplitude 
RMSEx,y 

(mm) 
RMSEz 
(mm) 

z Mean 
(mm) (m) 

RMSEx,y 
(mm) 

RMSEz 
(mm) 

z Mean 
(mm) (m) 

Raw (DNG)  image format JPEG image format 
K1_1_C1 13 54 6 0.027 K1_2_C1 9 106 10 0.460 
K1_1_C2 15 66 4 -0.081 K1_2_C2 18 186 9 -0.618 
K1_1_C3 1035 967 167 -0.020 K1_2_C3 1719 5289 276 0.496 
K1_1_C4 2129 4275 170 -0.136 K1_2_C4 2389 5592 402 -0.894 
L2_1_C1 24 22 10 -0.047 L2_2_C1 21 18 10 0.083 
L2_1_C2 41 51 20 0.152 L2_2_C2* 25 82 13 -0.135 
L2_1_C3 1854 7.E+04 978 -0.106 L2_2_C3 1854 7.E+04 650 0.165 
L2_1_C4 2033 7.E+04 972 0.403 L2_2_C4* 2127 7.E+04 730 1.050 
S9_5_C1 64 39 13 0.050 S9_6_C1 40 143 21 0.033 
S9_5_C2 1555 2.E+05 205 1.538 S9_6_C2 4565 2.E+05 654 3.589 
S9_5_C3* 57 211 9 -0.780 S9_6_C3* 33 214 12 -0.535 
S9_5_C4 1700 2.E+05 221 -0.256 S9_6_C4* 4762 2.E+05 197 -0.486 
S9_5_C5 1556 2.E+05 202 1.528 S9_6_C5 4566 2.E+05 640 3.105 
S9_5_C6 1699 2.E+05 219 0.970 S9_6_C6* 4917 2.E+05 215 -0.546 
Table 2: Summary of topographic model uncertainty (i.e., SfM model quality). Colours indicate model setup (Fig. 2 serves as 
legend). An * indicates models with pre-calibrated camera models. 
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3.3 Grain size distributions 350 

Here we report the results of our grain size measurements from images as grain size distributions (GSD) and the respective 

modelled uncertainties, which encompass both statistical uncertainties and errors introduced by topographic models. We 

successfully measured grain sizes of pebbles from all 28 SfM models, resulting in 112 complete GSDs (for each topographic 

model we measured in two regions, both in single images and orthophoto mosaics, respectively) with b-axes that range in 

size from the cut-off of 18 mm to > 35 cm. The number of identified grains ranges for the Kander survey (K1) from 902 to 355 

1600 (single images; SI) and 353 to 1142 (orthophoto mosaics; OM), for the Luetschine survey (L2) from 130 to 633 (SI) 

and 136 to 570 (OM), and for the Entle surveys (S9) from 333 to 1451 (SI) and 160 to 1058 (OM). In all surveys and in most 

cases, more grains are recovered after segmentation in single images compared to the number of grains found in orthophoto 

mosaics (Table S4; see also Figs. 5 and 6). Grain size distributions with uncertainties for each percentile can successfully be 

modelled with the bootstrapping and MC approach for all models (e.g., Figs. 5 and 6). The difference between the median of 360 

all photo-measured and all modelled percentiles ranges from 2.0 to 3.5% (SI) and 2.5 to 5.7% (OM) for survey K1, from 0.9 

to 3.6% (SI) and 1.4 to 4.1% (OM) for survey L2, and from 0.9 to 8.9% (SI) and 2.6 to 9.2% (OM) for both S9 surveys. 

These values are relative to the photo-measured percentile values. We note that even the maximum difference between the 

photo-measured percentiles and the modelled median for the percentiles is generally <10% for most percentiles. The only 

exceptions are some models of K1_2 (SI: 11 to 17%), L2_1 (SI: 25 to 47%; OM: 10 to 16%) and L2_2 (SI: 31 to 36%; OM: 365 

11 to 20%; see Table S4 for all results). Therefore, recovered grain size distributions from imagery are internally consistent 

within the modelled 95% CI (confidence interval) for each percentile and for all topographic models (e.g., Figs. 5 and 6), 

despite some variations in magnitude of uncertainty and a varying degree of agreement across models within surveys. 

The magnitude of grain size uncertainty varies for surveys and the orthoimage format used for grain size measurements. 

Generally, the modelled percentile uncertainty, i.e., the modelled 95% confidence interval (CI), is smaller for all GSDs from 370 

imagery of the K1 survey (e.g., Figs. 5a to d) than for GSDs from the L2 survey (e.g., 5e to h). A similar trend of survey 

specific grain size uncertainty is also visible when comparing results from S9_5 (Figs. 6a, b) to data from S9_6 (Figs. 6c, d). 

This is also observable in the CI as relative uncertainty, which varies from 6.5 to 9.4% (SI) and 7.7 to 15% (OM; Figs. 5b, d) 

for K1. Similarly, albeit with a generally larger magnitude, the modelled percentile uncertainty for L2 spans from 15.6 to 

41.5% (SI) and 15.6 to 37.2% (OM), whereas it ranges from 7.6 to 21% (SI) and 8.2 to 28.7% (OM) for the S9 surveys. 375 

However and importantly, the agreement of data from models within a survey (i.e., C1 to C6; see Sect. 2.2 for details) is 

higher for grains measured in single images (e.g., Figs. 5a, c, e, g and Figs. 6a, c), compared to grains measured in their 

orthomosaic counterparts (e.g., Figs 5b, d, f, h and Figs. 6b, d). 
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Figure 5: Selected grain size (i.e., b-axis length) distributions measured in different images (SI = single orthoimage, OM = orthophoto 380 
mosaic) from various UAV models (see Fig. 2 for model characteristics and colour legend) with the modelled 95% confidence interval 
(CI) for each percentile. All Kander (K1) data (a-d) in this figure refer to the region A, while all Luetschine (L2) data (e-h) correspond to 
the respective region B (see Fig. 1 for location). DNG = raw image acquisition format, JPEG = JPEG image acquisition format; D50, D84 = 
Percentiles 50 and 84, respectively; ngrains = Number of segmented grains. 
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 385 

Figure 6: Grain size distributions and percentile uncertainty (modelled 95% confidence interval; CI) for the Entle surveys (S9) for 
different UAV imagery (SI = single orthoimage, OM = orthophoto mosaic; see Fig. 2 for model characteristics and colour legend)). All 
data refer to the region A (see Fig. 1 for location). D50, D84 = Percentiles 50 and 84, respectively; ngrains = Number of segmented grains. 
Please note that S9_5 (a, b) was acquired in raw image fromat (DNG) while S9_5 images (c, d) were acquired as JPEG images. 

3.4 Key grain size percentiles 390 

Overall, modelled percentile medians for commonly used percentile values, i.e., D50, D84 and D96, are in agreement with the 

photo-measured percentile values for all results and averaged across all models (Table 3; see Table S5 for more details). 

However, the modelled estimations for the D50, D84 and D96, and their respective uncertainties, here reported for a 95% CI, 

vary considerably between individual surveys (Table 3), regions within surveys (Fig. 7), and the format of the images that 

are used for measuring the grain sizes (Fig. 8). 395 

For all grain sizes measured in the K1 survey the mean D50 with (3.1 - 3.2) ± (0.1 – 0.2) cm, the median D84 with (6.6 – 6.9) 

± (0.6 – 0.8) cm and the median D96 with (12.1 – 13.8) ± (1.4 – 1.9) cm are consistent and in close agreement (Table 3). This 

is true irrespective of the image region (Figs. 7a, b), the image format used for grain size measurement or the UAV image 

acquisition format (Figs. 8a, b). Percentiles from the L2 survey, e.g., the D50 with 4.7 ± (0.6 – 0.8) cm for region A and with 

(3.7 – 3.9) ± (0.3 – 0.4) cm for region B, are consistent within regions (Table 3). However, the modelled uncertainties are too 400 

large to establish differences in percentiles between regions (e.g., Figs 7c, d), or between model reference strategies, UAV 

https://doi.org/10.5194/esurf-2022-19
Preprint. Discussion started: 23 May 2022
c© Author(s) 2022. CC BY 4.0 License.



18 
 

image acquisition formats or between imagery formats (Figs. 8c, d). For percentiles from data for the S9 surveys, the 

situation is different. Here, key percentile values are only agreeing within regions when extracted from single images (Figs. 

7e, g), e.g., yielding a clearly distinguishable D50 of 3.4 ± 0.2 cm for region A and 4.1 ± 0.4 cm for region B. Thus, the 

averaged percentile values from orthomosaics (Table 3) would yield biased information, effectively prohibiting a distinction 405 

of different grain size signals of the regions (Figs. 7f, h). A closer inspection reveals that within the data from orthomosaics 

only imagery from SfM models, referenced without GCPs (i.e., C5 and C6; see also Fig. 2), and for one single region (B), is 

responsible for the inconsistent data. 

  Single Images (SI) Orthoimage mosaics (OM) 

D 
Grain 
size 

region 
median 
D (mm) 

mean D 
(mm) 

mean 
95% CI 
(mm) 

relative. 
Uncertainty 

(%) 
median 
D (mm) 

mean D 
(mm) 

mean 
95% CI 
(mm) 

relative 
Uncertainty 

(%) 

D50 
K1 A 32 31 3 8 33 32 4 11 
K1 B 32 31 2 8 32 31 3 11 

D84 
K1 A 65 66 11 16 67 66 15 22 
K1 B 70 69 11 16 68 67 14 21 

D96 
K1 A 122 121 28 23 121 123 38 31 
K1 B 137 138 35 25 122 125 37 30 

D50 
L2 A 48 47 15 32 47 47 12 26 
L2 B 36 37 6 17 39 39 8 20 

D84 
L2 A 119 120 41 35 115 113 31 27 
L2 B 98 95 30 31 93 94 26 28 

D96 
L2 A 202 197 79 39 179 178 51 29 
L2 B 195 184 61 31 171 164 53 31 

D50 
S9 A 34 33 3 10 34 32 4 13 
S9 B 41 40 8 20 36 35 8 22 

D84 
S9 A 67 66 10 15 64 63 13 20 
S9 B 109 107 26 24 83 83 27 32 

D96 
 

S9 A 114 114 32 28 103 104 33 32 
S9 B 185 183 52 28 138 143 52 37 

 Table 3: Key modelled percentile results (i.e., D50, D84 and D96) averaged over all models for each grain size region. 
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 410 

Figure 7: Modelled median grain size percentile D50 plotted against the D84 for all surveys: Kander (a, b), Luetschine (c, d), Entle (e-h) 
and regions of grain size sampling (A and B). For locations of the regions, see Fig. 1. OM = orthophoto mosaics, SI = single images. 

 

Figure 8: Modelled median values for percentiles D50, D84 and D96 from single orthoimages (SI) and orthophoto mosaics (OM) for 
selected regions of the survey sites. Different SfM model setups are colour-coded, please see Fig. 2 for detailed legend. Displayed 415 
uncertainties represent modelled 95% confidence intervals. Please note the logarithmic scale. 
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3.5 Field measurements at the Kander site (K1) 

The manual measurements of grains sizes >1.8 cm in the field with the Wolman method yielded 224 b-axis values for K1. 

The resulting key percentile lengths are 2.8 cm (D50), 5.3 cm (D84) and 10.2 cm (D96). For direct comparison, we measured 

grain sizes in cropped subsections of all K1 imagery, which returned 162 to 302 (SI) and 189 to 486 (OM) grains. The 420 

median of the relative percentile uncertainty (95% CI) ranged from 14.4 to 19.5% (SI) and from 12.7 to 21.9% (OM). Mean 

modelled key percentile values ranged between 3.0 ± 0.3 cm (SI; rel. 16 - 17%) and 3.2 ± 0.3 cm (OM; rel. 16 - 17%) for the 

D50. The mean modelled ranged D84 between (5.9 – 6.1) ± (1.0 – 1.1) cm (SI; rel. 33 – 36%) and (6.5 – 6.7) ± (1.0 – 1.1) cm 

(OM; rel. 30 - 31%), while the mean modelled D96 ranged between (11.6 – 12.2) ± (3.0 – 3.4) cm (SI; rel. 48 - 57%) and 

(11.5 – 12.0) ± (2.4 – 2.8) cm (OM; rel. 42 – 45%). These values are in good agreement with modelled results for whole 425 

regions (see Sect. 3.4 above and Table 3). 

4 Discussion  

Measurements of grain sizes in imageries obtained by an UAV need to be accompanied by a photogrammetric processing of 

the imageries to correct for camera lens distortion and to reference the images. Therefore, we begin by discussing the quality 

of our models and UAV imagery, as well as the conditions encountered in the field. We emphasize here that the aim of this 430 

study is not to optimise or review UAV strategies or SfM processing, thus, we restrict ourselves to report only noteworthy 

observations and their implications in Sect. 4.1. For more in depth discussions of UAV and SfM workflows, we refer to the 

dedicated literature (e.g., James et al., 2017b; O’Connor et al., 2017; Carbonneau and Dietrich, 2017; Eltner and Sofia, 2020, 

James et al., 2020). Then we focus on the process for measuring grain sizes and for modelling the uncertainties. Finally, we 

compare the results where grains were measured on images and in the field with the Wolman (1954) method. We then end 435 

with a discussion of how grain size data and their uncertainty depend on the various processing steps from UAV image 

acquisition to estimates of percentile values. 

4.1 UAV imagery and SfM model quality 

We successfully created topographic models from the image sets collected at the three survey sites. The topographic models 

are generally better for the Kander (K1) survey compared to the Luetschine (L2) and Entle (S9) surveys (Table 1) as 440 

comparatively fewer K1 images had to be excluded from the photogrammetric processing due to poor image quality (e.g., 

overexposure, blurred photos etc., as explained above). We attribute this to the better light and flight conditions (i.e., 

constantly sunny and weak wind), to lower RTK GNSS (real-time kinematic positioning for global navigation satellite 

systems) uncertainties and the more favourable angle and distribution of oblique camera positions (i.e., oblique cameras at 

the same altitude as the nadir positions and with an angle of 20°). In our specific case, vegetation seemed to have a lower 445 

impact on the precision of the SfM model quality, since the site K1 was characterized by the highest vegetation density on 

the bar (Fig. 1), yet the resulting models had the overall highest quality for all metrics. However, our different referencing 
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strategies (Fig. 2) allowed us to create topographic models with varying precision, accuracy and systematic errors for all 

surveys (Table 2), in which we find some noteworthy SfM characteristics.  

First, some SfM models (see Table 2) failed to successfully reference the images, i.e., they specifically failed to model the 450 

camera lens, thereby yielding completely wrong focal length estimations (>50% rel. difference), which then resulted in 

camera altitudes that were > 50% lower than the actual flight altitude. This occurred only in models with one flight level, a 

gridded flight-path and no oblique angle camera positions. We do not find this outcome as surprising, because such a 

condition produces the weakest network geometry, even if GCPs are included in the surveys (i.e., S9_5_C3 and S9_6_C3; 

see also James et al., 2017b; 2020). Interestingly, significantly more camera models failed for those surveys where the 455 

images were acquired in the JPEG format than compared to those models that base on images in the DNG format (5 

compared to 1). We suspect that this is a consequence of the UAV on-board pre-processing of images with a generic camera 

model, which results in camera modelling failure during the bundle adjustment (for a detailed discussion see James et al., 

2020).  

Second, surveys where images were referenced with GCPs, and where images taken with oblique camera positions were 460 

included, produced the most accurate and most precise models (see Fig. 2 and Table 2). In contrast, surveys without GCPs 

and with only single level grids produced the worst results. These results fit with our current understanding of SfM 

uncertainty (e.g., James et al., 2020; Sanz-Ablanedo et al., 2020). Specifically, this means that for those SfM models where 

the images were calibrated with GCPs both precision and accuracy are orders of magnitudes higher than for the models 

where the images were only directly geo-referenced (Table 2). We note here that the accuracy values reported in Table 2 for 465 

directly referenced models include systematic GPS errors of up to 200 m (S9) for the UAV platform, an issue that has been 

reported for the UAV platform family used in our study (e.g., Cook and Dietze, 2019). Furthermore, we can confirm that the 

selection of two flight altitudes, as proposed in some workflows (e.g., Carbonneau et al., 2018), seems not to improve the 

quality of the SfM model (see also Sanz-Ablanedo et al., 2020). In fact, the quality actually decreases as evidenced by the 

results where we used a large number (>10) of images from a second altitude. These had then to be removed from the S9 470 

models.  

Finally, the use of images that were taken with cameras at oblique angles significantly improved the model quality, i.e., it 

resulted in lower systematic errors, as demonstrated by James and Robson (2014) James et al. (2020), or Sanz-Ablanedo et 

al. (2020). Here, we highlight that for the K1 survey, models that base on images taken in the JPEG format have a 

significantly larger systematic error, expressed both as ‘doming’ and ‘bowling’, which is in stark contrast to the models 475 

where the images were taken in the DNG image format (Table 2). This was even the case for those models that included 

oblique camera positions and that were geo-referenced with GCPs. This effect was not observed in the results of the L2 

survey. However, when comparing similar models (suffix _C1 and _C3) we identified a smaller systematic error for the 

models that base on images in the DNG format, both for L2 and K1. We note that we cannot use the S9 models for such a 

comparison, since for these models separated flights were used to acquire the JPEG and DNG images (Table 1). 480 

Nevertheless, the aforementioned results suggest that the image acquisition format affects the quality of the SfM model, as 
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already suggested by James et al. (2020), at least for some survey geometries. Accordingly, the format of image acquisition 

should be considered during UAV survey planning, and we propose that DNG format can yield better results than images in 

the JEPG format. 

4.2 Precision and consistency of grain size measurements 485 

The approach where we automatically segmented the images and where we fitted the ellipsoids with PebbleCounts (Purinton 

and Bookhagen, 2019) yielded consistent results when measuring grain sizes, both within surveys and between surveys 

(Figs. 5 and 6; Tables S4, S5). The combined bootstrapping and Monte Carlo (MC) approach allowed us to estimate the 

difference between the modelled and the photo-measured median percentile value, which is less than 5% for single 

orthophotos and 10% for orthomosaics for all percentiles (Table S5). Thus, both the modelled median and 95% confidence 490 

intervals are representative of the grain size distributions measured on the photos. The median of the modelled percentile 

uncertainty (95% CI) relative to the photo-measured percentile varied between survey sites (~7 to 15% for K1, ~16 to 42% 

for L2 and ~8 to 29% for S9; Table S4). Similarly, the mean relative uncertainties (95% CI) for individual percentiles, such 

as the D50, varied from ~8 to 11% for K1, ~17 to 32% for L2 and ~10 to 22% for S9 (Table 3). Relative uncertainty values 

for the D84 and D96 increased, compared to the D50, but followed the same trends with up to a 39% relative uncertainty for 495 

the D96 in L2. These results allow us to successfully identify two different grain size populations for regions A and B, 

respectively, in the S9 surveys (Table 3 and Figs. 7e-h). For K1 where the sampling regions were almost identical (Fig. 1), 

all grain size results were consistent (Table 3 and Figs. 7a, b; see also Table S5). For L2, the large uncertainties prevent us 

from drawing such inferences (Figs. 7c, d). At a closer inspection, these findings have some interesting implications. 

In particular, because the modelled percentile uncertainty depends on the number of grains that could be identified, i.e., on 500 

the counting statistics, the percentile precision increases with the larger number of grains that were measured (Table S5). 

This is what we observed, and such results are in good agreement with reported statistical uncertainties that resulted from the 

application of comparable methods (Eaton et al., 2019). In addition, our data showed systematic differences if grain sizes 

were measured on single images (SI) or on orthophoto mosaics (OM). Grain size percentiles derived from orthophoto 

mosaics showed higher uncertainties than grain sizes measured on single orthoimages, both for the entire range of percentiles 505 

(Figs. 5 and 6) and for selected percentile values (Figs. 7 and 8). An exception is L2 where the uncertainty of the median 

grain size percentile was generally high (up to ~42%). Compared to the grain size data collected from orthophoto mosaics, 

the relative percentile uncertainty on the single image data was between 3 to 6% lower for K1 and between 0.6 to 8% lower 

for S9 surveys. Likewise, for individual key percentile values, i.e., the D50, D84 and D96, the uncertainties on the data 

retrieved from orthophoto mosaics were between 2 and 9% higher across all models of K1 and S9. However, we 510 

acknowledge that for some L2 models, the uncertainties on the grain size data were higher if the data was collected from 

single images than if the measurements were accomplished on orthomosaics. We attribute this to a combination of imagery 

and segmentation traits (see Sect. 4.4). 
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4.3 Grain size accuracy compared to field measurements 

Grain sizes in close-range UAV imagery through image segmentation are measured on a 2D approximation of a 3D surface 515 

of particles, which might be affected by the sedimentary structure, e.g., imbrication or armouring, and projection effects. 

Additionally, a bias could be introduced during the segmentation of the images. Therefore, we compare the sizes of grains 

measured on a subset of the K1 imagery with a dataset where the grains we manually measured in the field to test how our 

grain size estimations hold up against field measured data (Fig. 9).  

First, imagery-based grain size measurements result in an overestimation of the percentiles values compared to field-based 520 

surveys (Sect. 3.5), independent of the SfM model referencing strategy (Fig. 9). Such a systematic overestimation of grain 

sizes can even be found for models where the bundle adjustment was accomplished with ground control points and from 

single images (i.e., C1 and C2 curves in Fig. 9). This is most likely a result of an under-segmentation of grains in images, 

potential biases inherent to image based approaches, i.e., a 2D projection effect or partial overlapping of grains (Carbonneau 

et al., 2005), and/or a combination thereof. We note here that this systematic overestimation might have also have a survey-525 

specific component. We base this inference on the results of other analyses, which were accomplished with the same 

segmentation software and which documented a systematic underestimation of related percentile values, thus hinting at an 

effect related to over-segmentation (Chardon et al., 2021). This issue might be addressed if (i) images are segmented semi-

automatically where manual measurements are accomplished occasionally to set a benchmark (Burinton and Bookhagen, 

2021), (ii) reference measurements are conducted for calibration purposes, (Chardon et al., 2021) or if (iii) the automated 530 

segmentation is improved. However, more research is needed to improve our understanding of systematic traits of 

segmentation-based grain sizes and the related dependency on survey-specific characteristics. We note that our K1 site where 

we did find this bias is not suited for such an endeavour.  

Second, for all our K1 models, only grain sizes taken from single orthoimages (Figs. 9a, b) can be considered as acceptable, 

i.e., agreeing within uncertainties, despite a systematic overestimation of the percentile values. Contrarily, grain size data 535 

from orthophoto mosaics are less accurate than from single images when compared to field measured data and additionally 

show some dependency on the SfM model strategy, or more likely, on the SfM model uncertainty (Figs. 9c, d). This reflects 

a general trend where only grain sizes from orthophoto mosaics were systematically varying with the UAV model geometry 

within surveys (e.g., Figs. 5b, 6b and Fig. 8). This implies that the measurement results depend on whether grain sizes were 

collected on orthomosaics or on single images, and additionally on how the UAV survey was conducted if orthomosaics are 540 

used. 
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Figure 9: Relative difference between grain size percentiles estimated from UAV imagery to grain sizes, which were measured in the field 
for the region A of the Kander survey (K1). (a, b) Results for data from single orthoimages (SI). (c, d) Results for orthophoto mosaics 
(OM). DNG and JPEG indicates the image acquisition format. Key percentiles, i.e., D50, D84 and D96, are highlighted. The number of 545 
detected grains (ngrains) and the data are colour-coded for SfM model setup (see Fig. 2 for detailed legend). 
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4.4 Potential problems associated with orthophoto mosaics 

Our results show that in some cases grain size data extracted from orthomosaics are less precise and less consistent (see Sect. 

4.2) and less accurate when compared to field data (see Sect. 4.3). Similar inaccuracies were also reported by Woodget et al. 550 

(2018) upon measuring grain sizes on orthomosaics, albeit on the basis of statistical image properties. At this stage, we 

consider the following three reasons for the low accuracy and the lower precision in some grain size datasets that were 

collected on orthomosaics. 

First, we used fixed locations to measure grain sizes, which means that an in-accurate SfM model might result in a shift of 

the view field particularly if grains are measured on orthophoto mosaics (Figs. 10a, b). Such a bias will not be introduced if 555 

grains are measured on single images. Furthermore, for orthomosaics, if the sizes of the grains on the selected bars vary 

between the different views, then the grain size distributions will be different. This was actually the case for the Entle (S9) 

surveys (Figs. 6 and 7). Second, local disturbances and image warping (Figs. 10c, d) that may result upon generating the 

orthomosaic may also affect the segmentation of the images. Indeed, we could find small image artefacts in all our generated 

orthomosaics. They were particularly prominent in imageries created from the L2 models, i.e., the overall lowest quality 560 

models. Finally, a strong variation in the segmentation performance can occur when the automated version of PebbleCounts 

is used, which might introduce a bias as only a small fraction of pebbles might be found. In this context, segmentation errors, 

which are introduced in response to an over- or under-segmentation of the images (i.e. more or fewer pebbles identified of a 

certain size), might be the source of an additional bias, particularly for datasets where few pebbles are measured (Figs. 10e, 

f). In all our results, some under-segmentation did occur, but interestingly this process was most prominent if orthophoto 565 

mosaics were used and if grains were measured on low quality images (i.e., L2 and partly S9). Accordingly, we use these 

conditions, and probably a combination of them, to explain the larger uncertainties on those grain size datasets that were 

collected from orthophoto mosaics compared to the results where grains were measured on single orthoimages. 
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Figure 10: Systematic factors that influence grain size estimation from UAV imagery, especially from orthophoto mosaics (OM). (a,b) 570 
Effect of varying accuracy of SfM (Structure from Motion) used for referencing for orthophotomosaics which should display the same 
extent. (c,d) Comparison of undistorted single images (SI) with orthophoto mosaics, which highlight small scale image warping and 
artefacts: 1) Duplication from incorrect image stitching, 2) Blurring of pebble boundaries, and 3) irregular grain shapes. (e,f) Selected 
results highlighting the varying image segmentation performance. Examples of systematic under-segementation marked with white arrows. 
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4.5 Implications for workflows on grain size estimation  575 

Our results have some general implications for the estimation of grain sizes from UAV acquired imagery. We will present 

these in the order of a typical workflow that is generally employed upon measuring grain size datasets with a UAV/SfM 

workflow (e.g., Fig. 3). For UAV surveys with a subsequent SfM processing a best practise to achieve highest quality in SfM 

models (e.g., James et al., 2020; Eltner and Sofia, 2020; Sanz-Abledo et al., 2020) includes a GCP referencing and the 

storage of the images in the raw format. Survey designs without GCPs might be acceptable for grain size estimation in cases 580 

where (i) a high-precision spatial allocation of the grains is not needed, a correct image referencing and undistorting is 

possible potentially by using a pre-calibrated camera model (see also Carbonneau et al., 2018). In such cases, we recommend 

measurements on undistorted single orthoimages, especially when grain size distributions are expected to vary and sampling 

is done only locally. All these recommendations are valid independent on the method for grain size estimation.  

In principle, using a segmentation approach for grain size estimation allows for a rigorous error and uncertainty propagation. 585 

Specifically, SfM model uncertainties can be used for a statistically robust estimation of errors on grain datasets by 

combining a bootstrapping and Monte Carlo approach, as accomplished in this work. Even more, an error estimation can be 

accomplished for models without GCPs, for the case where a simple parametrization that only bases on a length and scale 

error is considered (see supporting Code S1). We emphasize that this is only possible when the image distance can be 

estimated. We also note that this approach allows to estimate uncertainties also for datasets where grains were measured in 590 

other imagery, e.g., images acquired with a handheld camera. Generally, this approach returns uncertainty values for both 

measurement results and statistical processing, which includes effects related to counting statistics. To our knowledge, no 

such possibility for the estimation of uncertainties exists for grain size estimations that are based on statistical image 

parameters. However, current segmentation techniques are prone to biases that result from under- or over-segmentations and 

2D projection effects of 3D structures. Therefore, in such cases, reductions of inaccuracies might be achieved through 595 

manual filtering of grains during segmentation (e.g., Burinton and Bookhagen, 2019; Detert and Weitbrecht, 2012) and/or 

through a calibration of the measurements with a reference data set (e.g., Chardon et al., 2021), where data was collected in 

the field, as exemplified in this work. Such a strategy is likely to improve and the accuracy of grain size data and yields in an 

estimate of the related uncertainty. 

5. Conclusions 600 

Our field-based approach in combination with the simple uncertainty modelling can be used to propagate all relevant 

uncertainties of SfM models onto grain size data that are extracted from segmented UAV imagery. The workflow proposed 

in this paper is applicable to any tasks that aim at measuring grain size data from images, and it allows to assess the 

sensitivity of such grain size data on the UAV survey strategy. This includes selection of the image acquisition format, for 

which the use of the raw image format during image acquisition instead of the JPEG format might reduce the systematic 605 

uncertainty in topographic models. For our setup, the image format used for grain size estimation was a key variable, where 
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an overall higher precision and accuracy was achieved if grain sizes were measured on undistorted single orthoimages rather 

than on orthophoto mosaics. Furthermore, general UAV survey conditions, e.g., light, wind or vegetation exert a control on 

the precision and accuracy of grain size data estimated from images, even if the topographic models used for referencing are 

of high quality. Contrarily, our grain size data is not very sensitive to the quality of the topographic model, as long as single 610 

images are used where distortions were corrected with a camera lens model during the photogrammetric processing. 

6 Code availability 

The code used for image processing and uncertainty estimation of grain size distributions is provided at 

https://doi.org/110.5281/zenodo.6415047 as python files and executable jupyter notebooks, where the latter also serve as 

documentation. Additionally, we provide there also the python script used for estimating the camera distance. 615 

7 Data availability 

Photo-measured grain size data are provided along with field measured b-axes values for K1 in a csv format an all UAV 

images used for SfM model generation and all orthoimages (both SI and OM), in which we measured grain sizes, can be 

found at https://doi.org/110.5281/zenodo.6415047. 
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